位运算与集合-世界聚焦
时间:2023-06-17 05:29:50来源:博客园

前言

在刷 LeetCode 的时候,我们常常碰到需要枚举同时选择几个元素,或者说枚举选择一个集合的情况,即同时选择 $\lbrace0, 1, 2\rbrace$ 或者 $\lbrace0, 1,3\rbrace$ 等,这里集合中的数字表示要选择的元素的索引。


(资料图片)

通常情况下,我们往往会使用哈希表来表示集合,好处在于可以方便的在 $O(1)$ 时间内确定元素是否处于集合中,坏处则是当我们需要做集合之间的运算,例如求交集或者并集,那么就需要 $O(n)$ 时间才能实现;另一个缺陷就是,当递归函数的可变实参中存在哈希表(或者对哈希表的引用)时,无法通过添加 $cach$ 数组实现记忆化搜索。

于是,我们需要想一个新的办法来表示集合,由于集合可以由全集(包含所有元素的集合)中每个元素的选或者不选来表示,因此,很容易联想到二进制上每一位的 $0$ 和 $1$,例如 $101 = 5$ 表示集合中只有第 $0$ 个元素和第 $2$ 个元素。

使用数学化一点的语言,即集合可以以如下方式压缩成二进制下的一个数字:

$$f(S)=\sum\limits_{i\in S}2^i$$

其中 $i$ 表示集合中的元素在原数组中的索引。$\lbrace a[0], a[1], a[3]\rbrace$ 即可由 $2^0+2^1+2^3 = 13$ 即二进制数 $1101$ 表示。

集合与元素

根据上面提到的二进制表示集合的方法,我们可以在 $O(1)$ 的时间内实现集合与元素之间的运算。

具体运算表格参见灵神的 从集合论到位运算,常见位运算技巧分类总结!。无需记忆,自己做题的时候很容易就能推导出来。

集合与集合

集合与集合之间的运算也可以在用二进制数表示集合的情况下,在 $O(1)$ 时间内完成计算。

具体运算表格同样参见灵神的 从集合论到位运算,常见位运算技巧分类总结!。

同样无需记忆,自己做题的时候很容易就能推导出来。

遍历集合

在集合用二进制数 $mask$ 表示的情况下,集合中的元素个数可以由 C++ 库函数 __builtin_popcount(mask)计算出来。

设元素范围从 $0$ 到 $n - 1$,挨个判断元素是否在集合 $s$ 中:

for (int i = 0; i < n; ++i) {    if ((s >> i) & 1) { // i 在 s 中,注意 == 运算优先级高于 &        //     }}

枚举集合

重头戏来了:设集合为 $s$,从大到小枚举 $s$ 的所有非空子集 $sub$:

for (int mask = s; mask != 0; mask = ((mask - 1) & s)) {    // 处理子集 sub 的逻辑}

暴力的枚举集合的办法是从 $s$ 出发,不断减一直到 $0$,但是这样中途会有很多并不是 $s$ 的子集的情况。

假设集合 $s = 10101$,那么它的子集从大到小依次为:

$$\lbrace 10101, 10100, 10001, 10000, 00101, 00100, 00001\rbrace$$

如果忽略掉 $10101$ 中间的两个 $0$,即忽略第一位和第三位的 $0$(位索引从 $0$ 开始),那么它的子集的数字变化与普通的二进制减法是一样的,即:

$$\lbrace 111, 110, 101, 100, 011, 010, 001\rbrace$$

因此,当我们执行 $(mask - 1)$ & $s$ 时,以 $10100$ 为例,相当于强制跳过了 $10100$ 到 $10001$ 中间那些第一位和第三位数字不为 $0$ 的数。

套用灵神的说法,以 $10100$ 为例,普通的二进制减法会把最低位的 $1$ 变成 $0$,把这个最低位的 $1$ 右边的 $0$ 都变成 $1$,即 $10100\rightarrow 10011$,我们这个压缩版的二进制减法,也是把最低位的 $1$ 变成 $0$,但对这个最低位的 $1$ 右边的 $0$,并不会全都变成 $1$,而是只保留 $s = 10101$ 中存在的 $1$,其他的会依旧是 $0$。

Gosper"s Hack

Gosper"s Hack 算法是生成 $n$ 元集合中所有包含 $k$ 个元素的子集的算法。

这里先给出 Gosper"s Hack 算法的代码

while (x < uplimit) {    int lowbit = x & (-x);    int left = x + lowbit;    int right = ((x ^ (x + lowbit)) / lowbit) >> 2;    x = left | right;}

接下来讲一下 Gopser"s Hack 算法的思想:

对一个二进制数,例如 $110110$,我们需要找到它从左往右的最后一个 $01$,然后把这个 $01$ 变成 $10$,再把它右边的 $1$ 全部集中到最右边(这里右边的 $1$ 显然都是连续的,否则与最后一个 $01$ 矛盾),即 $110110\rightarrow 111001$。

在举了例子之后,Gosper"s Hack 算法的思想其实很好理解。

我们利用 $x + lowbit(x)$ 得到的结果,就是将 $x$ 的第一个 $01$ 变成 $0$,同时右边的数全都变成 $0$,即 $110110\rightarrow 111000$,如果我们使用 $x \oplus (x + lowbit(x))$,即可得到 $x$ 从最后一个 $01$ 起的右边的数,即 $110110\rightarrow 001110$,我们再除以 $lowbit$,即可去掉 $x \oplus (x + lowbit(x))$ 的最右边的连续的 $0$,又因为 $x + lowbit(x)$ 会将这个最后一个的 $01$ 变成 $10$,$01 \oplus 10 = 11$,因此 $(x \oplus(x + low)) / lowbit(x)$ 的 $1$ 的个数比 $x$ 的最后一个 $01$ 的右边的 $1$ 的个数还多了 $2$ 个,于是我们再右移两位,即得到了我们需要 $right$。

参考

从集合论到位运算,常见位运算技巧分类总结!

算法学习笔记(75): Gosper"s Hack

标签:

最新
  • 位运算与集合-世界聚焦

    前言在刷LeetCode的时候,我们常常碰到需要枚举同时选择几个元素,或者

  • 全球快消息!今日美元/加元汇率走势图分析(6月16日)

    周五,美元 加元徘徊于1 3228关口下方,现交投于1 3228附近,涨幅0 04%

  • 每日时讯!2023呼和浩特市赛罕区第二幼儿园现场材料审核通知

    呼和浩特市赛罕区第二幼儿园2023年秋季招生工作现场材料审核通知根据《

  • 天天微速讯:股票行情快报:郴电国际(600969)6月16日主力资金净卖出197.41万元

    截至2023年6月16日收盘,郴电国际(600969)报收于7 04元,上涨0 14%,换

  • 聚焦元宇宙,咸阳高新区与百度智能云签约-环球动态

    集微网消息,6月15日,陕西咸阳高新区与百度智能云签订合作框架协议。

  • 思创科技拟向银行申请总额不超过6000万的银行低风险授信额度-世界聚看点

    思创科技拟向银行申请总额不超过6000万的银行低风险授信额度2023 6 162

  • 2023重庆涪陵文化旅游推介会走进成都

    为助推重庆涪陵文旅融合营销走深走实,促进成渝文旅交流与互动,2023重

  • 感谢意大利女排!蔡斌坐收渔翁之利,中国女排劲敌0-3爆冷惨败_天天快播报

    北京时间6月15日,中国女排正在积极备战女排国家联赛第二周与保加利亚

  • 全球讯息:陷“流动性陷阱”之争!央行增发的钱流向何处?

    陷“流动性陷阱”之争!央行增发的钱流向何处?,贷款,央行,信贷,货币,

  • 福特汽车据悉召回98万辆汽车-每日看点

    App6月16日消息,据市场消息,美国国家公路交通安全管理局称,福特汽车

  • 南岭民爆:子公司中标47亿元日常经营合同 焦点关注

    南岭民爆公告,子公司中标日常经营合同,预计合同为单价合同,中标全费

  • 2023年5月社零数据点评:消费修复略放缓 线上仍好于线下

    2023年5月社零数据点评:消费修复略放缓线上仍好于线下

  • 焦点热议:一文讲清楚“电路反馈”

    一、反馈的基本概念1 1什么是反馈?反馈,就是把放大电路的输出量的一

  • 全球热议:时尚气质是穿出来的,记牢这3个搭配公式,高级洋气还显瘦

    俗话说,三分靠长相,七分靠打扮,越是会穿搭的女人,在提升自身外形气

  • 2023第二届中国(绵阳)米粉节开幕 川内首家米粉产业学院揭牌

    四川经济网绵阳讯(记者庄祥贵胡敏张宇)为加快打造百亿米粉产业集群,

  • 火爆的“贴膜”生意,为什么车企自己不做?_快播报

    常见的配件,想“合格”也不容易

  • 旅游
    • 高质量发展调研行vlog|奇!从“三滴水”转变为“一粒盐”

    • 国产达芬奇手术机器人即将面世_全球聚看点

    • 小米的问题,绝对不是小米一家企业的简单问题

    • 通讯!江西:力争2023年底前全省实现个人存量商品房“带押过户”业务依申请可办